Kamis, 19 Juli 2018

VIRTUAL ANCHOR LENGTH CALCULATION FOR PIPELINES


Its been a long day since i've posted my last journal. Today I'm gonna share a bit of my internet research about Virtual Anchor length. This term is usually used in the offshore project especially in pipeline project. lately I am concern about this field of study, Pipeline, because now I'm working on the Pipeline division in one of the offshore consultant company.
So lets begin with the article. Because i realize that I'm just a newbie in the "blog world", so today i will just repost the article that i have found in the internet about this topic, please be advice :). next time I will be more interactive in posting some good knowledge.
A pipeline restrained by fixed anchors will experience a series of stresses including longitudinal, bending, and axial. Virtual anchor lengths are taken as the distance required for the frictional force provided by the soil surrounding the pipe to equal the forces applied by thermal/ pressure expansion and the soil’s resisting friction per unit length of pipe.
Anchors are placed strategically along the pipeline to help prevent movement. Unrestrained pipeline movement can cause damage to the connecting piping and equipment. The length of piping required to form the virtual anchor is known as the active length. It must be noted that the force required to fully restrain a pipe is not a function of its length. Factors that influence the required force to restrain pipe include temperature, pressure and percentage strain within the pipe.
Soil provides a constant frictional force along a buried steel pipeline. The magnitude of the frictional force depends on the burial depth, pipe weight, soil density, and coefficient of friction between the soil and steel. Therefore, starting from a free end, the total restraint exerted by the soil on the pipe gradually increases until it reaches the fully restrained load at the virtual anchor. At this point, the naturally occurring forces are balanced with a restraint point. Similarly, moving along the pipe away from the virtual anchor, the pipe expansion becomes gradually minimized until a point of zero expansion is reached indicating the pipe is fully held in place.
Axial expansion is calculated by taking the average of the full axial restraint at one end of the pipe and zero restraint at the opposite end of the pipe. When compared to above ground piping, the total axial expansion at the free end of a buried pipeline is half of the calculated value for similar scenario involving above ground pipe.

In reality most pipes do not have a totally free end but have some resistance due to soil restraint as the pipe exits the ground and from the connection to above ground piping. This acts to reduce the expansion at the ‘free’ end. Soils with lower friction resistance or pipes with less depth of cover have longer active lengths and thus have greater expansion at the free end.
Figure. Virtual anchor length - Visual representation
Source: http://www.whatispiping.com/virtual-anchor-length-calculation-for-pipelines

Tidak ada komentar:

Posting Komentar